Meaned spaces and a general duality principle

نویسندگان

  • József Kolumbán
  • József J. Kolumbán
چکیده

We present a new duality principle, in which we do not suppose that the range of the functions that are to be optimized is a subset of a linear space. Therefore, unlike the classical optimization theory, our main result can be applied for example to functions with ranges in Heisenberg groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

Duality Principles and Reduction Theorems

We introduce a fairly general class of Banach function spaces X given by kfk X := kf k X , where f is deened on a totally {{nite non-atomic measure space (R;), f is the non-increasing rearrangement of f with respect to and X is certain rearrangement-invariant space over the interval (0; (R)). This class contains for example classical Lorentz spaces. We prove a general duality principle for thes...

متن کامل

Duals and approximate duals of g-frames in Hilbert spaces

In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.

متن کامل

On the duality between p-modulus and probability measures

Motivated by recent developments on calculus in metric measure spaces (X, d,m), we prove a general duality principle between Fuglede’s notion [15] of p-modulus for families of finite Borel measures in (X, d) and probability measures with barycenter in Lq(X,m), with q dual exponent of p ∈ (1,∞). We apply this general duality principle to study null sets for families of parametric and non-paramet...

متن کامل

Strong Convergence in Hilbert Spaces via Γ-Duality

We analyze a primal-dual pair of problems generated via a duality theory introduced by Svaiter. We propose a general algorithm and study its convergence properties. The focus is a general primal-dual principle for strong convergence of some classes of algorithms. In particular, we give a different viewpoint for the weak-to-strong principle of Bauschke and Combettes and unify many results concer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013